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Highlights

• Design of a novel very large scale unconstrained local optimisation algo-
rithm

• Gradient Flow based Quasi-Newton algorithm with full convergence proof

• Hessian-free approach, tested on nonlinear problems of up to 1 million
variables

• Designed specifically for training very large-scale neural networks and
datasets

• Tested successfully on industrial chemical and computer vision datasets
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Abstract

This paper presents a novel optimisation method, termed Hessian-free Gradient Flow, for the optimisation of

deep neural networks. The algorithm entails the design characteristics of the Truncated Newton, Conjugate

Gradient and Gradient Flow method. It employs a finite difference approximation scheme to make the algo-

rithm Hessian-free and makes use of Armijo conditions to determine the descent condition. The method is

first tested on standard testing functions with a high optimisation model dimensionality. Performance on the

testing functions has demonstrated the potential of the algorithm to be applied to large-scale optimisation prob-

lems. The algorithm is then tested on classification and regression tasks using real-world datasets. Comparable

performance to conventional optimisers has been obtained in both cases.

Keywords: Optimisation, Neural Networks, Deep learning, Truncated Newton, Gradient Flow, Hessian-free

1. Introduction

Deep neural networks (DNN) have wide applications in many research fields including autonomous driving

[1], speech recognition [2, 3], computer vision [4], natural language processing [5], and bioinformatics [6]. The

performance of deep neural networks depends highly on the training process, which has been the focus of many

recent research works [7, 8]. The training of neural networks is essentially the optimisation of a complicated,

non-convex loss function with respect to its parameters. Due to the large dimensionality of the input data, and

the complicated functional forms of the DNNs, optimizations of DNNs to high precision and computational

speed poses a serious challenge in modern applications. This is because there is increasing demands in both

model dimensionality (number of input and output) and model complexity internal to the DNNs.

The optimisation methods of neural networks can be divided into two categories: stochastic methods and

deterministic methods [9]. Stochastic methods have been heavily adopted in industrial applications due to their

lower computational cost and easy implementation [10]. Research into stochastic methods is still ongoing,

since their inception six decades ago [11–14]. From the most basic Stochastic Gradient Descent (SGD), a
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multitude of methods including SGD with momentum [15], and SGD with adaptive learning rates [16], have

been developed. Stochastic optimisation methods are widely used in the hope of locating the global minimum

by identifying the globally optimal tunings for its internal parameters. Since DNN models as objective functions

are always non-convex in nature, finding the location of the global solution with increasing dimensionality in

their parameter space is a combinatorially hard computational problem. The implementation of stochastic

methods carry with it the advantage of simplicity. However, the disadvantage of stochastic methods is that

its search direction often zig-zags and the minimum point reached is often not exact. Moreover, they offer no

guarantee of global optimality, and cannot even determine if the point they converge to is a local minimum at

the very least.

With recent developments in computational capability of the hardware, deterministic methods are rising in

significance. The mainstream deterministic optimisation method used extensively in the training of DNNs is

the L-BFGS method [17] and its variants [18]. They have been widely used in current research [19, 20]. The

disadvantage is that in the optimisation of a DNN’s objective function, these methods cannot guarantee global

optimality due to its non-convexity [21]. However, they are able to guarantee a local minimum of the cost

function of least squares fitting.

Stochastic methods have been widely researched in the past. Since [11] proved in theory the effective-

ness of SGD, many variants of the stochastic methods have become the centre of attention. [22] justified the

convergence of adaptive learning rate methods in a convex topology. Later on, [23] used mathematical proofs

to demonstrate that one of the adaptive learning rate methods, AdaGrad-Norm, can converge to a stationary

point in a non-convex topology. Variant optimisers belonging to the adaptive learning rate family have been

extensively researched, including RMSprop [24], AdaDelta [25], Adam [26], AdaFTRL [27], SGD-BB [28],

AdaBatch [29], SC-Adagrad [30], AMSGRAD [31], and Padam [32]. Apart from demonstrating the conver-

gence of these stochastic methods, there is also research such as [33] that served to prove the global optimality

of the converged point, but only in a theoretical context.

Research into deterministic models has been limited due to the associated computational cost in storing

second-order information. Although [34] made use of the Hessian matrix of the loss function to understand

the dynamics of neural network optimization, and deeply researched into the eigenvalues of the Hessian, the

research results are not yet implemented in a real-world case study. However, this research accentuated the

importance of understanding Hessian information to achieve optimality, and how the Hessian matrix determines

the speed of convergence and the generalisation properties. The focus on the Hessian matrix has inspired

research into second-order methods to be applied to the training of neural networks [34].

This paper proposes a new method adopting approximated second-order information following a quasi-

Newton scheme to optimise DNNs. The method is derived based on a linearised version of the Gradient Flow

method and makes use of finite differences to approximate values of a Hessian matrix. We test the effectiveness
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of the optimiser on the MNIST and OILDROPLET dataset. The former adopts a deep convolutional neural

network (CNN) and the latter adopts a conventional deep neural network (DNN). The architecture of the CNNs

used are cutting-edge and the DNN is fine-tuned but the focus is on the optimiser performance compared

conventional optimisers such as SGD, Adam and L-BFGS.

In this paper, Section 2 derives the proposed quasi-Newton method named HFGF. Section 3 provides a

proof of convergence for the novel method. Section 4 evaluates and analyses the performance of the method

on testing functions. Section 5 applies the method to real-life datasets of MNIST and OILDROPLET, adopting

optimised DNN architecture in each case.

2. Algorithm Overview

We propose a method that adopts approximated second-order information to perform an optimisation task.

To derive the optimisation method, we first write the general update rule as follows:

xk+1 = xk + ∆t · ∆xk. (1)

The gradient descent method uses the negative gradient vector as search direction:

xk+1 = xk − ∆t · ∇ f (xk). (2)

The limit ∆t → 0 gives the smooth trajectory of the gradient flow method:

dx
dt

= −∇ f (xk). (3)

Linearizing the right-hand side, we obtain:

dx
dt
≈ −[∇ f (xk) + ∇2 f (xk) · (xk+1 − xk)]. (4)

Rewriting the gradient vector and the Hessian matrix as gk and Hk, and applying a linearly implicit Euler

scheme gives:

xk+1 − xk = −∆t · [gk + Hk · (xk+1 − xk)]. (5)

The step length ∆tk is replaced with the step-size hk and Equation 5 is rearranged:

[
Hk +

1
hk
· I

]
(xk+1 − xk) = −gk. (6)

The search direction is equal to ∆xk which takes the form pk, similar to Newton’s equation. To give Brown and

Bartholomew-Bigg’s equation [35] and the iteration update for xk+1:
[
Hk +

1
hk
· I

]
pk = −gk,

xk+1 = xk + pk.

(7)
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This equation can be rewritten in the form of a linear equation, where the Hessian matrix and the product of

step-size and identity matrix have been grouped together into a new matrix, Qk:

Qk = Hk +
1
hk
· I,

Qk · pk = −gk.

(8)

To solve for this equation, we follow a schema that is similar to the truncated Newton method, where the outer

loop solves for the optimisation problem and the inner loop solves for the search direction pk. The inner loop

adopts the Conjugate Gradient method with a solution for a linear system Ax = b demonstrated as [36]:

αk =
rT

k rk

dT
k Adk

,

xk+1 = xk + αkdk,

rk+1 = rk + αkAdk,

βk+1 =
rT

k+1rk+1

rT
k rk

,

dk+1 = −rk+1 + βk+1dk.

(9)

Instead of solving for Ax = b, we iteratively solve for Qp = −g using the Conjugate Gradient algorithm. The

inner loop does not solve for the exact solution. Instead, the number of iterations is truncated, i.e. we stop

after a finite number of iterations. This reduces the computational complexity of each iteration, generating an

algorithm that converges faster to the optimum.

The combination of the truncated Newton and gradient flow methods creates a large-scale solution method

for unconstrained optimisation problem with improved properties. These properties include better navigation of

non-convex regions through the substitution of Newton’s equation with the gradient flow equation. The manip-

ulation of step-size (hk) within the gradient flow method also supports a faster and more accurate convergence

than Newton’s method. This should result in better convergence qualities for the truncated Newton method

when combined with gradient flow.

Another important improvement of the algorithm is that it is Hessian-free. The product of the Hessian

matrix and the conjugate direction vector product is approximated using finite difference such that the algorithm

only evaluates first-order derivatives. The scheme is outlined below in the vector finite difference equation

(Equation 10), where ε is a user-defined small number to approximate an infinitesimal value.

Qkdi =

[∇ f (xk + εdi) − ∇ f (xk)
ε

]
+

1
hk

Idi. (10)

The proposed HFGF algorithm is outlined in Algorithm 1. The value of h0 is initialised to any value between

0 and 1, and p0 is the zero vector commonly used in truncated Netwon methods. From the pseudocode, it is

observable that the inner loop is effectively a CG iteration and the values of Qk pk and Qkdi are solved by finite

differences.
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Algorithm 1 : HFGF Algorithm

Initialize: x0, p0 =
−→
0 and h0 = 10−3

while ‖gk‖ > tol do

Qk pk =
g(xk+εpk)−g(xk)

ε + 1
hk

I · pk

Initialize: r0 = Qk pk + gk, d0 = −r0 and pi = pk

for i = 0, 1, 2, ..., imax do

Qkdi =
g(xk+εdi)−g(xk)

ε + 1
hk

I · di

αi =
rT

i ri

dT
i Qkdi

pi+1 = pi + αidi

ri+1 = ri + αidi

βi+1 =
rT

i+1ri+1

rT
i ri

di+1 = −ri+1 + βi+1di

xtry = xk + pi+1

if f (xtry) < f (xk) then

if f (xtry) < f (xk) + µ(gT
k pk) [Armijo First Order Conditions (of descent)] then

xk+1 = xtry and pk+1 = pi+1

hk+1 = 2hk

break [Minor iteration]

else if i = imax then

xk+1 = xtry and pk+1 = pi+1

hk+1 = 1
2 hk

break [Minor iteration]

end if

else if i = imax then

hk+1 = 1
2 hk and xtry not accepted

break [Minor iteration]

end if

end for

end while
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3. Convergence Analysis

Training ANNs and DNNs can be viewed as the equivalent to minimizing a large-scale optimization prob-

lem of the form:

min f (x), (11)

where x ∈ Rn is a real valued n-dimensional vector of system variables that are to be optimized to minimize the

scalar function f (x) : Rn → R. We will adopt the inexact Newton Method to derive the proof of convergence.

In this paper, we assume that f has an optimal value f (x∗) at x∗. We will use the following assumption

about the objective function for the rest of this article.

Assumption 1. Assume that f is L-smooth, that is, f is differentiable and the gradient is L-Lipschitz continu-
ous, i.e., ∀x, y ∈ Rn, ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖.

A study focused on variational partial differential equations by Botsaris [37] led to the development of

gradient flow (GF) methods. The solution of an unconstrained optimization problem shown in Equation 11 is

calculated by solving this coupled set of ordinary differential equations [37, 35, 38]:

dx(t)
dt

= −∇ f (x). (12)

It is worth considering the linearized form of Equation 12, namely:

dx(t)
dt
≈ −∇ f (xk) − ∇2 f (xk)[x(t) − xk]. (13)

Rewriting the gradient vector and the Hessian matrix as gk and Hk, respectively, and applying a linearly implicit

Euler scheme gives the following:

xk+1 − xk = −∆tk[∇ f (xk) − ∇2 f (xk)(xk+1 − xk)]. (14)

The step length ∆tk is replaced with the step-size hk and Equation 14 is rearranged:
[
∇2 f (xk) +

1
hk

I

]
(xk+1 − xk) = −∇ f (xk). (15)

The search direction is equal to ∆tk which takes the form pk, similar to Newton’s equation, to give Brown and

Bartholomew-Bigg’s equation [19] and the iteration update for xk+1:
[
∇2 f (xk) +

1
hk

I

]
pk = −∇ f (xk),

xk+1 = xk + pk.

(16)

Theorem 1. Consider HFGF algorithm (equation [10]). Under the convex assumption (Assumption 1), when
0 < hk ≤ 1

L , we have
‖xk − x∗‖2 ≤ σk‖x0 − x∗‖2, (17)

where σ is a constant satisfy that 1 − 1
L ≤ σ < 1. Furthermore,

‖ f (x(t)) − f (x∗)‖ ≤ L
2
σk‖x0 − x∗‖2,

holds.
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Proof. Using a finite difference scheme to approximate Hessian vector-product, there exists ε > 0, such

that:

Hk pk =
∇ f (xk + εpk) − ∇ f (xk)

ε
+

1
hk

I pk. (18)

Then we get the iterate, as following:

−∇ f (xk) =
∇ f (xk + εpk) − ∇ f (xk)

ε
+

1
hk

I pk,

xk+1 = xk + pk.

(19)

Let x̃k+1 := xk + εpk and pk = xk+1 − xk, then rewrite Equation 19 as:

xk+1 = xk − hk∇ f (xk) − hk

ε

(∇ f (x̃k+1) − ∇ f (xk)
)
,

x̃k+1 = xk + ε(xk+1 − xk).
(20)

By substituting the second equation in Equation 20 into the first equation, the following implicit iterative form

can be obtained:

xk+1 = xk − hk∇ f (xk) − hk

ε

(∇ f (xk + ε(xk+1 − xk)) − ∇ f (xk)
)
. (21)

According to the hypothesis function f second order differentiable, and Hessian matrix ∇2 f is positive definite.

The first-order Taylor expansion of ∇ f (xk + ε(xk+1− xk)) in the above equation at xk can be obtained as follows:

xk+1 = xk − hk∇ f (xk) − hk

ε

(
∇ f (xk) + ∇2 f (zk) · ε(xk+1 − xk) − ∇ f (xk)

)
, (22)

where zk ∈ (xk, xk + ε(xk+1 − xk)), i.e., there exists some δ ∈ (0, 1) such that zk = xk + ε · δ(xk+1 − xk). Rewrite

Equation 22 as follows:

xk+1 − hk∇2 f (zk)(xk+1 − xk) = xk − hk∇ f (xk), (23)

then:

∥∥∥xk+1 − x∗ − hk∇2 f (zk)(xk+1 − xk)
∥∥∥2

=
∥∥∥xk − x∗ − hk∇ f (xk)

∥∥∥2
. (24)

For the left side of Equation 24:

∥∥∥xk+1 − x∗ − hk∇2 f (zk)(xk+1 − xk)
∥∥∥2

= ‖xk+1 − x∗‖2 + h2
k

∥∥∥∇2 f (zk)
∥∥∥2‖xk+1 − xk‖2 − 2hk

〈
xk+1 − x∗,∇2 f (zk)(xk+1 − xk)

〉

≥ ‖xk+1 − x∗‖2 + h2
k

∥∥∥∇2 f (zk)
∥∥∥2‖xk+1 − xk‖2 − 2hk‖xk+1 − x∗‖ ·

∥∥∥∇2 f (zk)
∥∥∥ · ‖xk+1 − xk‖. (25)

Assume that hk ≤ 2
‖∇2 f (zk)‖

‖xk+1 − x∗‖
‖xk+1 − xk‖ , then:

∥∥∥xk+1 − x∗ − hk∇2 f (zk)(xk+1 − xk)
∥∥∥2 ≥ ‖xk+1 − x∗‖2. (26)
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For the right side of Equation 24:

∥∥∥xk − x∗ − hk∇ f (xk)
∥∥∥2

= ‖xk − x∗‖2 + h2
k

∥∥∥∇ f (xk)
∥∥∥2 − 2hk

〈
xk − x∗,∇ f (xk)

〉

≤ ‖xk − x∗‖2 − hk

( 2
L
− hk

) ∥∥∥∇ f (xk)
∥∥∥2
, (27)

where we have used the following inequality:

1
L
‖∇ f (x) − ∇ f (y)‖2 ≤ 〈x − y,∇ f (x) − ∇ f (y)

〉
,

for all x, y ∈ Rn, and ∇ f (x∗) = 0.

According to Equation 24, the following inequality can be obtained from Equation 26 and Equation 27:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − hk

( 2
L
− hk

) ∥∥∥∇ f (xk)
∥∥∥2

≤ ‖xk − x∗‖2 − hk

( 2
L
− hk

)
· L‖xk − x∗‖2

≤ (
1 − hk(2 − hkL)

)‖xk − x∗‖2. (28)

Thus when 0 ≤ hk ≤ 1
L

, there exist some 1 − 1
L ≤ σ < 1, such that

‖xk − x∗‖2 ≤ σ‖xk − x∗‖2 ≤ σk‖x0 − x∗‖2.

Furthermore, we arrive at the simplest analysis: f (xk) − f (x∗) ≤ L
2 ‖xk − x∗‖2 ≤ L

2σ
k‖x0 − x∗‖2.

4. Analysis of the Algorithm

This section undertakes the analysis of the cost and performance of the HFGF algorithm. To test the

performance, we introduce several testing functions that is highly complex and non-convex in nature. These

functions are introduced to simulate the highly complicated shape of the objective function of neural networks.

The results are generated using a 2.3 GHz Intel Core i5 processor with a memory of 8 GB 2133 MHz LPDDR3.

4.1. Performance on Testing Functions

The standard testing functions adopted are shown in Table 1. The functions range from the simplest case

of a two-dimensional unimodal convex function to the more complex case of a multidimensional, multimodal

function. The latter is the focus since we expect the objective function of a neural network to be multimodal

and multidimensional.
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Table 1: Standard testing function types and details.

Test Functions Types of Function Types of Mimima Reference

1. Rosenbrock,

2. Chung Reynolds,

3. De Jong

Unimodal, convex,

multidimensional
Global

Jamil & Yang [39],

Molga & Smutnicki [40]

4. Rastrigin,

5. Ackley

Multimodal,

multidimensional

Many local

& Global

Jamil & Yang [39],

Molga & Smutnicki [40]

6. Booth
Unimodal, convex,

two-dimensional
Global Jamil & Yang [39]

7. Dropwave,

8. Shubert

Multimodal,

two-dimensional

Many local

& Global
Molga & Smutnicki [40]

4.1.1. Two-Dimensional Test Functions

The test on two-dimensional functions serve as a testament to the convergence behaviour of the optimisers.

By applying the optimiser on two-dimensional functions we observe that the proposed HFGF method outper-

forms other traditional optimisers including Truncated Newton, Newton Conjugate Gradient, and L-BFGS. The

results are summarised in Table 2. These results are generated from 10 independent runs in each equation.

The two-dimensional test functions have been used to test the basic convergence ability of the proposed

method. The CPU time required for each method was negligible for all 2-D test cases. The Dropwave and

Shubert functions have many local minima which require the optimisers to navigate through a highly non-

convex region to find the global minima. At the global minima, the Dropwave and Shubert functions have

values of f (x∗) = −1 and f (x∗) = 0 respectively. From the Table 2, it is clear that the proposed method

performed the best as it was the only method that converged to values closer to the global minima with a high

success rate.

4.1.2. Multidimensional Test Functions

We perform analysis on the multidimensional testing functions, both unimodal and multimodal. High

dimensions of 100,000 and 1,000,000 are selected to simulate the high dimension of data we input to a deep

neural network. The results are displayed in Table 3-4. At this scale, the other optimisers calculated using

SciPy were not able to converge in a short time frame, except where initialisation of x values were very close

to the global optimum. The CPU times extended to hours in some cases. Details of a comparison between the

HFGF and the other quasi-Newton optimisers defined in SciPy are tabulated in the Supplementary Material.

The HFGF method was able to handle problems ranging from 50,000 to 200,000 inputs with less than 5 minutes
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Table 2: Results of performing different classic second-order optimisation algorithms on 2-D Test Functions. The algorithms include

Truncated Newton method (TN), Nonlinear Conjugate Gradient (NCG), L-BFGS method and the proposed HFGF method. f (x) f inal

is the final function value obtained after optimisation. niter is the total number of iterations in the major loop. n f ev is the number of

function evaluations. ngev is the number of gradient evaluations. S uccess[%] is the rate of success in optimising each function.

Function Optimisation Method f (x) f inal niter n f ev ngev Convergence[%]

Dropwave

TN −2.92 × 10−1 4 17 8 100

NCG −2.08 × 10−1 3 41 9 67

L-BFGS −3.23 × 10−1 3 28 6 67

HFGF −1.00 × 100 2 32 34 100

Shubert

TN 5.80 × 10−17 4 13 7 100

NCG 2.13 × 10−2 3 39 8 50

L-BFGS 3.33 × 10−15 5 25 9 50

HFGF 2.20 × 10−11 8 24 32 100

Booth

TN 2.34 × 10−1 7 21 15 100

NCG 1.04 × 10−16 2 20 5 100

L-BFGS 1.23 × 10−12 5 20 10 100

HFGF 1.18 × 10−11 15 45 60 100

of CPU times in most cases. This clearly illustrates the superiority of the proposed HFGF algorithm in very

large-scale applications compared to NCG, L-BFGS, and TN methods.

Table 3: HFGF Results for 100,000-Dimension Test Functions.

Function f (x) f inal niter n f ev ngev CPUtime(s) Convergence[%]

Rosenbrock 1.40 × 10−9 409 105 514 743.47 100

Dejong 6.03 × 10−6 75 25 100 38.16 100

Chung Reynolds 2.49 × 10−2 58 19 77 50.77 100

Rastrigin 1.16 × 106 22 7 29 25.84 100

Ackley 2.272 × 101 22 72 80 72.07 100

4.2. Time Analysis

The HFGF method involves both function evaluations and gradient evaluations. We perform CPU time

analysis to identify the most time-consuming steps in the optimizer. We calculate the CPU time spent on

function evaluations, gradient evaluations and other steps respectively based on 10 different independent runs.

The optimizer is run to solve for the optima of a 100-dimensional Rosenbrock function.
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Table 4: HFGF Results for 1,000,000-Dimension Test Functions.

Function f (x) f inal niter n f ev ngev CPUtime(s) Convergence[%]

Rosenbrock 2.86 × 10−9 399 110 509 6112.24 100

Dejong 6.03 × 10−5 75 25 100 418.40 100

Chung Reynolds 2.98 × 10−1 69 23 92 543.41 100

Rastrigin 1.16 × 107 32 11 43 368.37 100

Ackley 6.560 × 100 27 74 81 702.19 100

Based on 10 experiments, the average number of function evaluations in one run is 60, costing a total CPU

time of 0.00237 seconds (7.77% of total time). The average number of gradient evaluations in one run is 45,

costing a total CPU time of 0.0186 seconds (60.99% of total time). The other steps cost a total CPU time of

0.0095 seconds (31.25% of total time). The average CPU time for one step of function evaluation is 3.97×10−5

seconds and the average CPU time for one step of gradient evaluation is 4.16 × 10−4 seconds.

From the results of this experiment, it is evident that the most of the CPU time is spent on gradient evalua-

tions. This has demonstrated the importance of selecting an automatic differentiation package that has a shorter

time-frame to evaluate derivatives. Moreover, the optimization of the algorithm can center on the reduction of

the number of gradient evaluations.

4.3. Memory Storage

The proposed method requires the storage of 16 vectors of length n (the vectors xk, g(xk), and 14 working

vectors). This is similar to the requirement of L-BFGS method, a popular quasi-Newton method, which has a

memory storage of 14n, based on the scheme that has 7 vectors of past information storage. In either case, we

do not need to store second-order derivatives information. There is also no storage of matrices; only storage of

vectors suffices. It should be noted that although our proposed method and L-BFGS use different principles to

compute search direction, the routines used for the linesearch are similar: both use cubic interpolation to obtain

the strong Wolfe conditions [41].

5. Applications

The analysis above provides a theoretical understanding of the algorithmic performance. In this section,

the optimiser is applied to several test cases to determine its real-world performance. The derived algorithm is

applied to large-scale optimisation of DNNs to test its speed, robustness and accuracy. In particular, DNNs are

optimised to confirm the efficacy of the optimiser to large-scale problems.
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5.1. Datasets

In order to test the performance of our proposed optimiser, we perform one classification test and one

regression task on the proposed optimiser adopting real-life dataset. First, we perform classification on the

MNIST dataset. The MNIST dataset has a training set of 60,000 examples and a test set of 10,000 examples,

consisting of hand-written digits representing the numbers 0-9. It is a commonly used database in the machine

learning community to test pattern recognition capability of a designed network with minimal efforts on pre-

processing and formatting the images. We adopt LeNet-5, consisting of Convolutional Neural Network (CNN)

architecture, to analyse MNIST data base. The network consists of two convolutional layers separated by max-

pooling layers, followed by three fully-connected layers. Here we adopt mini-batches to perform optimization.

The activation function used is ReLU.

Second, we perform a regression task on the OILDROPLET dataset. The dataset contains observations

generated from dropping an oil droplet to a surface of water. The oil is composed of several organic chemi-

cals including diethyl phthalate, octanol, octanoic acid and pentanol. The input features of the dataset include

composition of the droplet, environment temperature, oil viscosity, oil surface tension and oil density. The

output features are generated by observing the movement and merging of the oil droplet on the water surface,

including average movement speed, maximum speed of a single droplet, average number of droplets in the last

second, average number of droplets throughout the experiment. We construct an optimised neural network con-

sisting of three hidden layers with 50, 20 and 20 neurons respectively. Between each layer we apply the ReLU

activation function. Since the key is to compare performance of the optimiser, the architectural parameters are

held constant.

We have performed data pre-processing on both the MNIST dataset and the OILDROPLET dataset. In the

MNIST dataset, the black-and-white images are converted to a series of gray-scale values for each pixel. In the

OILDROPLET dataset, we perform normalisation of the x values as a pre-processing step. In either case, the

pre-processing of data remains the same for the application of different optimisation methods.

5.2. CNN on MNIST Data

The network is run on several optimizers and the comparison of the performance is shown in Table 5. We

have selected SGD, Adam and L-BFGS as the target of comparison. SGD and Adam are selected because these

are the first-order stochastic methods. SGD is the most basic form and Adam is the commercially-available

best-performing counterpart. L-BFGS is adopted because it is a quasi-Newton method. It acts as a benchmark

to the current quasi-second order methods and is known to be very fast. Before comparison, we optimise the

performance of the optimisers through hyperparameter tuning. The learning rate set for SGD is set at 0.01,

the optimal hyperparameter obtained after tuning. The learning rate for Adam is 0.001. The hyper-parameter

values for HFGF are optimised using a grid search. We assume the results from a grid search is relatively
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optimal in this analysis. The performance of the three optimisers are compared based on accuracy of prediction

on the test set.

Table 5: Comparison between the performance of different optimizers on the classification task of MNIST data

Optimizer Accuracy Final training loss Time of convergence (s)

SGD 92.5% 0.0801 55.98

Adam 91.6% 0.2448 65.13

L-BFGS 90.9% 0.3565 2225.21

HFGF 96.4% 0.0643 142.11

From Table 5, it can be seen that our proposed method obtained comparable result in terms of accuracy

of classification. While the conventional quasi-Newton method of L-BFGS sometimes breaks down with a

high time of convergence, our proposed quasi-Netwon method is robust to the problem. Although the final

loss achieved is higher than the first-order methods, the classification accuracy is comparable to the other two

optimisers. Moreover, although the time of convergence is longer than stochastic first-order methods, it is lower

than the benchmark of L-BFGS. For problems that rely on speed of computation, an improvement from 92.5%

to 96.4% in accuracy at the expense of computation time is not desired. This can be viewed as a limitation

of the algorithm. In cases where accuracy is the key, the results show promises in improving performance.

Moreover, compared to other quasi-Newton methods such as L-BFGS, the speed becomes an edge as there is

significant improvement in terms of computation time.

5.3. Traditional DNN on OILDROPLET

We apply the same set of optimisers, SGD, Adam, L-BFGS and the proposed optimisation algorithm, on

the OILDROPLET dataset. The result of application is shown in Table 6. The learning rate used in SGD is

0.01, and in Adam is 0.05. In HFGF method, we have mostly used the default settings or settings of a similar

scale. The settings used include the following: the increase in the value of h after each step is 8×, the decrease

is 0.125×. The hyperparameters defined to have infinitesimal values are all close to zero. The value of ε is

10−7 and of tolerance is 10−5. The value of µ is 10−4 and of initial h is 10−3. The maximum number of inner

iterations is originally 15 but is now tuned to 2. This tuning has greatly increased the processing speed of the

algorithm. To evaluate the effectiveness of optimisation, we use the mean squared error (MSE) loss on the test

dataset as the metric for performance. Since there are four output feature, we tabulate an MSE for each dataset.

On the OILDROPLET dataset, the HFGF method achieved better result than SGD in terms of final loss

and regression error. It is under-performing compared to Adam in terms of final loss, test error and speed.

However, it is faster than the quasi-Newton method of L-BFGS. Considering that L-BFGS sometimes fails for
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Table 6: Comparison between the performance of different optimisers on the classification task of OILDROPLET data. S Ave represents

the average speed of droplets. DFinalAve represents the average number of droplets in the last second. S Max represents the maximum

average single droplet speed. DAve represents the average number of droplets.

Optimizer Training loss
Test error

Time of convergence (s)
S Ave DFinalAve S Max DAve

SGD 0.389 0.3782 0.3785 0.4616 0.3365 162.89

Adam 0.224 0.1960 0.2297 0.2589 0.2104 160.76

L-BFGS 0.188 0.1583 0.1938 0.2223 0.1789 4249.79

HFGF 0.290 0.2800 0.2707 0.3478 0.2577 535.89

complicated problems, our optimiser is able to perform more complicated optimisation tasks and is more robust

to datasets of high dimensionality.

6. Conclusion and Future Work

We have demonstrated the derivation of a novel quasi-Newton optimisation method with a proof of conver-

gence. The method is named Hessian-free Gradient Flow (HFGF) and has been designed for the optimization

of DNNs. We first tested the HFGF method on standard testing functions and was then compared with the

other common optimization algorithms to test for its convergence. Then we performed time analysis to identify

the most time-consuming steps in the proposed algorithm. We also briefly discussed the storage requirement.

The HFGF method was then applied to case studies where open-source databases and real-world industrial

databases are used to test the effectiveness of the optimization algorithm.

The aim of the algorithm is not to beat cutting-edge first stochastic algorithms as the second-order method

itself carries with it a computational cost. However, our algorithm has demonstrated comparable performance

in tasks of classification and regression with regard to popular first-order algorithms. It is also more robust than

L-BFGS algorithm if we set L-BFGS as a benchmark for quasi-Newton algorithms.

In summary, although the method was not the fastest optimization algorithm compared to L-BFGS algo-

rithms in simple cases, and not the simplest compared to SGD or Adam, it introduces a trade-off between speed

and robustness. Moreover, the method has demonstrated advantages in classification accuracy in large datasets

compared to most first-order algorithms.

Currently ongoing future research is focused on improving the speed of the new method, particularly by

reducing the number of gradient evaluations and a more optimised algorithmic implementation architecture. To

prevent convergence to local minima, we can also introduce stochastic components to the optimiser. According

to the principle of “no free lunch”, each optimization method has its own advantage in certain contexts. We

believe our new algorithm may be more suited for the fitting of DNNs, compared to other standard optimization
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Table 7: HFGF Results for 10,000-Dimension Test Functions.

Function Optimisation Method f (x) f inal niter n f ev ngev CPU Time Success

Rosenbrock

TN 7.54 × 103 433 9219 - 59932.24 No

NCG 3.99 × 100 183 2.83 × 106 283 2215.28 Yes

L-BFGS 6.49 × 104 1 2.00 × 104 - 13.122 No

HFGF 2.31 × 10−8 62 308 278 17.811 Yes

Dejong

TN 1.01 × 10−7 4 18 - 118.22 Yes

NCG 2.90 × 10−6 1 5.00 × 104 5 30.64 Yes

L-BFGS 8.14 × 102 1 4.00 × 104 - 25.24 No

HFGF 1.69 × 10−5 14 28 42 0.84 Yes

Chung Reynolds

TN 2.02 × 10−6 3 15 - 101.49 Yes

NCG 6.87 × 105 1 1.60 × 105 16 101.49 No

L-BFGS 4.10 × 106 1 3.00 × 104 - 18.62 No

HFGF 3.62 × 10−3 14 28 42 1.13 Yes

Rastrigin

TN 5.97 × 10−6 4 17 - 121.04 Yes

NCG 6.42 × 10−4 1 8.00 × 104 8 53.79 Yes

L-BFGS 2.29 × 10−4 1 8.00 × 104 - 55.22 Yes

HFGF 4.15 × 10−6 16 66 43 2.29 Yes

Ackley

TN 6.02 × 10−9 4 53 - 7387.56 Yes

NCG 4.25 × 100 0 1.00 × 104 1 128.38 No

L-BFGS 4.25 × 100 0 1.000 × 104 - 127.40 No

HFGF 2.27 × 10−2 22 72 80 3.98 Yes

methods.

7. Supplementary Material

We have performed a comparison of the CPU time between different quasi-Newton algorithms. The results

are tabulated in Table 7 for the dimension of 10,000 and in Table 8 for the dimension of 100,000. The optimisers

of Truncated Newton, Newton Conjugate Gradient and L-BFGS are coded in SciPy [42] and HFGF is coded

using the package Casadi [43]. We have only included comparisons of CPU time for Dejong, Chung Reynolds

and Rastrigin functions for the dimensionality of 100,000 because the optimisers other than HFGF fail to

converge within a time frame of 100,000 seconds. The operating system used to run the code is Ubuntu 18.04.1

LTS and the CPU used is Intel Core i7-8700K with a memory of 3.70GHz. A few points we have noted from

the data:
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Table 8: HFGF Results for 100,000-Dimension Test Functions. Only HFGF results are included for Rosenbrock and Ackley functions

because the other optimisers fail to converge within 100,000 seconds of CPU time.

Function Optimisation Method f (x) f inal niter n f ev ngev CPU Time Success

Rosenbrock HFGF 1.40 × 10−9 409 105 514 743.47 Yes

Dejong

TN 3.35 × 10−12 13 83 - 53195.35 Yes

NCG 9.33 × 10−3 1 6.00 × 105 6 9379.80 Yes

L-BFGS 1.88 × 104 1 4.00 × 105 - 2678.09 No

HFGF 6.03 × 10−4 75 25 100 38.16 Yes

Chung Reynolds

TN 1.95 × 10−4 12 101 - 66195.31 Yes

NCG 2.72 × 107 1 1.70 × 106 17 11539.14 No

L-BFGS 3.53 × 108 1 4.00 × 105 - 2688.95 No

HFGF 2.49 × 10−2 58 19 77 50.77 Yes

Rastrigin

TN 1.90 × 10−3 5 28 - 24269.53 Yes

NCG 1.98 × 10−4 1 1.10 × 106 11 9795.51 Yes

L-BFGS 3.96 × 101 1 1.00 × 106 - 8185.25 No

HFGF 1.16 × 106 22 7 29 25.84 Yes

Ackley HFGF 2.27 × 101 22 72 80 72.07 Yes

• The time of convergence for HFGF is much faster compared to other quasi-Newton method.

• HFGF converges successfully in all cases.

• Optimisers other than HFGF succeed and fail in different cases, well demonstrating the “No Free Lunch”

Theorem.

• The optimiser L-BFGS fails in most cases, indicating its lack of robustness.
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