
UNIVERSITY OF SOUTHAMPTON

Faculty of Physical Sciences and Engineering

School of Electronics and Computer Science

GPSP: Graph Partition and Space
Projection based approach for

Heterogeneous Network Embedding

by

Wenyu DU

Completed at Sep 2017

Supervisor: Dr. Markus Brede

Second Examiner: Dr. Sarvapali (Gopal) Ramchurn

A dissertation submitted in partial fulfillment of the degree of
MSc Data Science.

Abstract

We study the problem of embedding different types of vertices in heterogeneous networks.

Previous network embedding approaches mostly focus on homogeneous networks and only

a few heterogeneous network embedding methods still learn the embeddings of different

types of nodes in the same latent space. We develop one scalable heterogeneous network

embedding model, namely GPSP. The GPSP model uses edge-type based Graph Partition

to divide the heterogeneous network into two types of subnetworks, homogeneous networks

and bipartite networks. Next homogeneous subnetworks will be fed into conventional

homogeneous network embedding models in separate spaces. Then the projective relation

hidden in bipartite subnetworks will be extracted to learn projective embeddings in the

Space Projection step. Finally, GPSP combines homogeneous and projective embeddings

to generate the complete heterogeneous embeddings. Experiments show that GPSP model

outperforms all state-of-the-art baseline embedding models in various network mining

tasks, like classification and clustering for vertices in the heterogeneous network.

i

ii

Acknowledgements

I feel the need to express my gratitude to my supervisor Dr. Markus Brede for offering me

the chance to work on such a novel topic. During our meeting, he had many nutritious

talks for the project and beyond. I still remembered he pointed out it was crucial to

learn the knowledge thoroughly for doing research. Superficial comprehension might be

okay for taught modules but not enough for doing any research, as I summarized after

the meeting.

In addition, I need to thank Dr. Tao Wang who had the project idea and introduced me

the field of Network Embedding. During our extensive conversations, we came up many

basic ideas for the paper, like Graph Partition. And he has shown himself as an excellent

example of being a true young academic.

Also, I want to thank the second examiner of the project Dr. Sarvapali (Gopal) Ramchurn

for motivation and appreciation he gave me in the meeting.

Last but not least, I want to thank my parents and all my friends for their understanding

and supporting.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Aims and Objectives . 3

1.4 Contribution . 4

2 Related Work 6

2.1 History of Network Embedding . 6

2.1.1 1977 - 2013 . 6

2.1.2 2013 - Now . 7

2.2 Introduction of Network Embedding Models 8

2.2.1 Homogeneous Model 1: DeepWalk 8

2.2.2 Homogeneous Model 2: LINE . 9

2.2.3 Heterogeneous Model 1: PTE . 12

2.2.4 Heterogeneous Model 2: Metapath2vec 13

3 Problem Definition 14

4 The GPSP Framework 18

4.1 Edge-type Based Graph Partition . 18

4.1.1 Building Type Table . 18

v

vi CONTENTS

4.1.2 Graph Partition . 19

4.2 For Homogeneous Network: Embedding . 19

4.2.1 Model One: LINE . 20

4.2.2 Model Two: DeepWalk . 20

4.3 For Bipartite Network: Latent Space Projection 20

4.3.1 Projective Relation . 20

4.3.2 Space Projection . 21

4.3.3 Discussion . 22

4.4 Representations Concatenation . 23

4.5 Discussion . 23

5 Experiments 26

5.1 Experimental setup . 26

5.1.1 Data Set . 26

5.1.2 Benchmark Algorithms . 27

5.1.3 Parameter Settings . 27

5.1.4 Configuration . 28

5.2 Multi-label classification . 28

5.2.1 Procedure . 28

5.2.2 Result and evaluation . 29

5.3 Clustering . 30

5.3.1 Procedure . 30

5.3.2 Result and evaluation . 31

5.4 Parameter Sensitivity . 31

5.5 Scalability . 32

5.6 Visualization . 33

6 Conclusion and Future work 37

6.1 Conclusion . 37

6.2 Reflection on Project Plan . 38

6.3 Future Work . 38

Bibliography 38

Appendices 44

A Project Plan 44

vii

viii

List of Tables

4.1 Edge and Vertex Type Table . 19

5.1 Multi-label classification results for author embeddings in LINE-related

algorithms . 30

5.2 Multi-label classification results for author embeddings in DeepWalk-related

algorithms . 30

5.3 Node results for author embeddings in LINE-related algorithms 31

5.4 Node results for author embeddings in DeepWalk-related algorithms 31

5.5 Parameter sensitivity in multi-label classification 32

5.6 Eight subfields in CS and their numerical representations in the projection 34

ix

x

List of Figures

1.1 One example of information networks: Facebook friendship network 2

1.2 One example of heterogeneous information network: academic network . . 3

2.1 Two procedures in DeepWalk . 9

2.2 An illustration of two orders of proximity 10

2.3 Convert a text corpora into a heterogeneous text network 12

2.4 Academic network and three meta paths 13

3.1 One example of heterogeneous network: academic network 16

3.2 Four subnetworks after using edge-type based Graph Partition in Figure 3.1 17

4.1 Subset of a bipartite network . 21

4.2 An illustration of Space Projection . 21

4.3 Two reverse projective relations . 22

4.4 Concatenate representations . 23

5.1 Scalability of GPSP . 33

5.2 2D T-SNE projections of embeddings in GPSPD 35

5.3 2D T-SNE projections of four DeepWalk-related embeddings 36

A.1 Gantt Chart . 44

xi

xii

Chapter 1

Introduction

1.1 Background

Human social activities, academic activities and biology networks, are examples of real-

world complex systems, wherein enormous multi-typed components interact with each

other [11]. In such systems, these interacting components compose the interconnected

networks, named as information networks [30]. From Facebook network to Wikipedia

network, it is evident that the information network is ubiquitous and takes an impor-

tant part in modern information infrastructure [29]. Figure 1.1 shows one example of

information networks.

In the preceding decades, analysis of these information networks attracts attentions from

a wide range of disciplines, such as Physics, Computer Science, Social Science, and so on.

Particularly, in the field of data mining and information retrieval, information network

analysis becomes one of the main research topics. The basic paradigm is to mine implicit

information from interaction links in these information networks, and related work covers

scopes from link mining and analysis [9, 15, 42], graph mining [40] to social network

analysis [26, 41] and network science [18].

However, most outputs of traditional information network analysis cannot be directly

fed into multiple downstream machine learning algorithms, a cumbersome pre-processing

step is required. Inspired by recent advances of word embedding in the neutral language

processing (NLP) field [3], i.e. word2vec embedding model [22, 23]. Information net-

1

2 Chapter 1. Introduction

Figure 1.1: One example of information networks: Facebook friendship network

work embedding (network embedding for short) or called information network

latent representation learning (network representation learning for short) was

formally introduced to learn general hidden pattern from large-scale information networks

containing millions of vertices (nodes) and edges (links). The learned outputs of net-

work embedding are usually vectorized representations (embeddings) for all vertices

in these networks.

The output then can be used straightforwardly for various data mining applications such

as node classification [16, 28], clustering [32], recommendation [38], network visualization

[20], missing link prediction [19] and anomaly detection [5]. In stead of building hand-

crafted feature vectors, network embedding models such as DeepWalk [27], LINE [34]

and node2vec [10] can learn meaningful latent vector representations from network data

directly.

1.2 Motivation

Most of the network embedding methods are built upon an underlying hypothesis: there

is only one type of nodes and links in the network. That is, the network is homogeneous.

Like a large-scale friendship network [17], the kind of millions of objects can only be

1.3. Aims and Objectives 3

human, and tens of millions of links can only represent friendship relation.

However, in practical cases, information networks usually exist in a heterogeneous fashion;

there are multiple types of vertices and edges in an information network. Figure 1.2 [14]

shows an example that demonstrates a heterogeneous academic network containing two

distinct types of vertices, author and paper, and three kinds of links between objects.

A connection between two papers should represent a citation relationship while a link

between an author and a paper should mean the author writes the paper.

Figure 1.2: One example of heterogeneous information network: academic network[14]

Compared to homogeneous network embedding, heterogeneous network embedding re-

quires the algorithms to take objects and links’ type information into account. Since the

concept of meta path was proposed in 2011 [31], it became the dominant methodology

in the heterogeneous network analysis field. And in only a few existing heterogeneous

network embedding algorithms [7, 12], most of them are designed based on the meta path

concept. However, the meta path based heterogeneous network embedding algorithms still

focus on learning representations for different types of vertices in the same latent space.

Apparently, different types of vertices and their links have entirely different meanings.

1.3 Aims and Objectives

So, for a heterogeneous network, can we try to learn representations separately concerning

vertices’ types? Can we apply homogeneous network-oriented embedding algorithms like

LINE or DeepWalk to heterogeneous networks with simple modification?

Aiming to solve the above questions, the project explores the potential solutions to parti-

4 Chapter 1. Introduction

tion heterogeneous networks into subnetworks, perform network embedding on homoge-

neous subnetworks, analyze relations between subnetworks and combine their outputs as

the final output. Moreover, the model should also be compared with previous network em-

bedding models for various network mining tasks, such as node classification, clustering,

and visualization.

Based on the aims above, the objectives can be summarized as:

• Familiar with previous successful network embedding models by running or building

them.

• Familiar with heterogeneous information networks and related work.

• Implement the main network embedding model for heterogeneous networks.

• Compare the performance of the model with other previous models by using models’

output for different network mining tasks.

• Evaluate the experiment and sum up as a conclusion.

1.4 Contribution

This project formalizes the edge-based Graph Partition problem, where heterogeneous

network will be divided into homogeneous and bipartite networks. We also introduce the

latent Space Projection concept that a vertex can learn different representation vectors in

different spaces. Building on the above ideas, GPSP, a heterogeneous network embedding

model is presented. The goal of GPSP is to learn a vertex’ representations from different

perspectives (spaces). We first perform edge-based Graph Partition to get homogeneous

and bipartite subnetworks. Then we apply conventional embedding algorithms on homo-

geneous subnetworks and use Space Projection techniques to learn projective presentations

for vertices. The homogeneous and projective presentations will be concatenated as the

final heterogeneous embedding.

The proposed GPSP is different from previous network embedding models, which mainly

focus on homogeneous network [34, 27, 10]. Specifically, the ignorance of type information

1.4. Contribution 5

of vertices and edges in training causes the conventional embedding models to produce

type indistinguishable embeddings for heterogeneous vertices. The model differs from

PTE [33] and metapath2vec [7] as well. PTE is a semi-supervised heterogeneous text

network embedding model, but GPSP and metapath2vec are unsupervised heterogeneous

network embedding models. However, metapath2vec and PTE still project different types

of vertices into the same embedding space while GPSP solves this problem by Space

Projection.

To summarize, our work makes the following contribution:

1. Formalizes the edge-based Graph Partition problem and identifies its relation to

different types of networks.

2. Introduces the Space Projection concept into the network embedding domain and

formalizes the projection process.

3. Develops GPSP, a novel heterogeneous network embedding model to preserve both

structural and semantic (type) information in the heterogeneous network.

4. Through experiments, demonstrates the efficacy of GPSP in various network mining

tasks such as node classification and clustering.

Chapter 2

Related Work

2.1 History of Network Embedding

2.1.1 1977 - 2013

Although network embedding only witnesses gradual popularity in the recent five years,

its pioneer research can date back to 1977 [8] when graph embedding problem was first

introduced. In the first few years of the new millennium, a family of new general graph

embedding algorithms was developed [25, 37]. These algorithms aim to construct low di-

mensional manifolds to model the nonlinear geometric data, such as Laplacian Eigenmaps

[2], Isomap [37] and spectral based approaches [6, 39].

Up till 2013, a large number of network embedding methods had been proposed. Iwata et

al. [13] performed probabilistic latent semantic analysis on document networks. Temporal

information was employed by Tang et al. [36] for analyzing dynamic multi-mode networks.

Mei et al. [21] implemented a harmonic regularization based embedding framework for

topic modeling problem in the network structure.

However, like Laplacian Eigenmap [2] and MDS [4], embedding models mentioned above

fail to handle a large scale network. The reason is that these algorithms focus on factor-

izing a network into a matrix or tensor format and generate latent features for vertices

or edges in this matrix or tensor, but the computational cost of decomposing such a

large scale matrix or tensor is usually too high. Moreover, this approach also suffers

6

2.1. History of Network Embedding 7

from statistical performance drawback [10], making it impractical to embed large scale

networks.

2.1.2 2013 - Now

With the prevalence of deep learning methods, researchers tried to design neural network

based embedding algorithms. In 2013, a famous word embedding model word2vec [23, 22]

was first proposed in the natural language processing (NLP) domain. It was designed

as a two-layer neural network and to learn the distributed representations for words in

a size-fixed shifting window. The goal of the framework is to optimize the distributed

probabilities for all words in their ”context”. If one word appears in one window, the rest

words in this window will be regarded as the ”context” of this word. This maximizing

probability task could be categorized as a maximum likelihood estimation problem.

Building on the concept of word2vec, DeepWalk [27] was introduced in the network em-

bedding field. But unlike the word document, which can naturally provide sentences

as paths for the window to slide, networked data do not have this property. So Deep-

Walk performs random walking within the network and record the walking paths as the

”sentences” in which the window can slide across vertices to get ”context”.

In 2015, Tang et al. proposed a large-scale information network embedding method

LINE [34], wherein they introduced the concept of the first order and the second order of

proximity in the network. The model LINE can preserve these two orders of proximity in

the learned representations.

More recently, Yang et al. proved DeepWalk is equivalent to a matrix factorization TADW

[43]. Grover and Leskovec proposed node2vec [10], a biased random walk model, which is a

mixture of breadth-first and width-first search approach. Followed the idea in LINE, Tang

et al. implemented PTE [33], a semi-supervised model for embedding heterogeneous text

network. In 2017, metapath2vec [7], a meta path based heterogeneous network embedding

model was introduced.

8 Chapter 2. Related Work

2.2 Introduction of Network Embedding Models

This section will introduce four successful network embedding models in detail, two ho-

mogeneous network embedding models, DeepWalk and LINE, and two heterogeneous

network embedding ones, PTE and methpath2vec.

DeepWalk and LINE will be adopted in the project while DeepWalk, LINE and a modified

version of PTE will be used as the benchmarks in the paper.

2.2.1 Homogeneous Model 1: DeepWalk

This DeepWalk [27] algorithm contains two parts; first a random walk generator and

second an update procedure, which will be introduced respectively.

Random walk generator

Starting from each vertex in the network, the walk generator will randomly visit one

of the neighbors of the last visited vertex and iterate until reach a maximum walking

length t. The neighborhood relation is defined by whether there is an edge between two

vertices. Then for each vertex, the above random walking procedure will perform γ times

to generate γ random walk paths, as shown in Figure 2.1 (a).

Representation mapping and Skip-Gram

Then every generated random walk path Wvi will be applied to Skip-Gram, a language

model introduced in word2vec [22], where the joint probabilities among the vertices that

co-occur within a window will be maximized. In practice, when the window shifts across

the path, each vertex vj within the window will be mapped to its current representation

vector Φ(vj) ∈ Rd (See Figure 2.1 (b)). Then the mapped representation will be updated

based on the ”context” in the window.

Updating rule in Skip-Gram

Here is the updating rule: for every vertex vi in the walk path Wvi , its context is

the neighbor vertices within the size of the slide window w, which is defined as C =

2.2. Introduction of Network Embedding Models 9

(a) Random walked paths

(b) Representation mapping: Wv4 is
the random path, uk is the window and
vj is the mapping vertex

Figure 2.1: Two procedures in DeepWalk [27]

{vi−w, vi−w+1, . . . , vi+w−1, vi+w}. The goal of updating is to maximize the average log

probability of all node pairs in Wvi :

O =
1

|Wvi |

|Wvi |∑
i=1

∑
−w≤j≤w,j 6=0

log p(vi+j|vi) (2.1)

Posterior distribution p

In terms of probability p(vj|vi), we can model it as the posterior distribution of logistic

regression or softmax classifier [27]. Formula 2.2 defines a softmax classifier version,

p(vj|vi) =
exp(cTvjdvi)∑
v∈V exp(c

T
v dvi)

(2.2)

where vector cv represents the contexts of vertex v while vector dv represents vertex v. In

the DeepWalk’s paper, one type of softmax classifiers, Hierarchical Softmax [24] is used

for speedup optimization.

2.2.2 Homogeneous Model 2: LINE

LINE [34], a large-scale network embedding model, is another homogeneous network em-

bedding model, aiming to preserve both first and second orders of proximity in the net-

works. Here is the introduction of two orders of proximity.

10 Chapter 2. Related Work

First order proximity

First order proximity refers to the local pairwise proximity between the vertices in the

network [34]. It describes a phenomenon that similar vertices are most likely to be linked

directly in a network [1]. In Figure 2.2, vertex 6 and 7 are directly connected, accord-

ing to first order proximity, these two vertices should have similar representations after

performing network embedding.

Second order proximity

Second order proximity is based on another phenomenon observed in the network that

”even two vertices are not directly linked but many neighbors of them are the same, so

they two also should have similar vector representations after embedding”. The relation

between vertices 5 and 6 in Figure 2.2 is such an example. The second order proximity

fills the blank that the first order proximity leaves, because first order proximity fails

to represent global structure in the network but second order proximity can. Moreover,

massive legitimate connections are not observed in a real-world network [34].

Figure 2.2: An illustration of two orders of proximity[34]

Model two orders of proximity as similarity distribution using K-L Divergence

In LINE, they try to preserve the first and second order proximity by maximizing similari-

ties between the distribution in the embedded model (joint probability) and in observation

model (empirical probability). In terms of joint probability, this is also modeled as a pos-

terior distribution of softmax classifier or its binary class version, sigmoid function.

2.2. Introduction of Network Embedding Models 11

For the first order of proximity, the joint probability between vertices vi and vj are defined

in Formula 2.3, where ~ui and ~uj are vector representations for two vertices respectively.

And empirical probability for vertices vi and vj is the weight between two vertices wi,j

over all weights W in the network in Formula 2.4.

p1(vi, vj) =
1

1 + exp(−~uTi · ~uj)
(2.3)

p̂1(vi, vj) =
wij

W
(2.4)

The goal is to make the similarities between two distribution probabilities p1 and p̂1 as

much as possible. KullbackLeibler (KL) divergence is adopted to minimize differences

between two distributions as shown in Formula 2.5.

O1 = −
∑

(i,j)∈E

wijlogp1(vi, vj) (2.5)

Regarding the second order proximity, each vertex is mapped to two types of representa-

tions, the original one, denoted as ~ui and the ”context” one, denoted as ~u′i. The original

one only represents the vertex itself, and the ”context” one represents the vertex’ ”con-

text”, defined as the vertex’s all neighbor vertices.

The joint probability of the second order proximity p2(vj|vi) for vertices vi and vj is

defined as the ”context” of vertex vj generated by vertex vi in Formula 2.6, where |V | is

the number of all vertices in the network.

p2(vj|vi) =
exp(~u′Tj · ~ui)∑|V |
k=1 exp(~u

′T
k · ~ui)

(2.6)

The empirical probability for vertices vi and vj is the weight between two vertices over the

overall weights between vertex vj and all vi’s neighbors (the out-neighbors of vertex i) as

shown in Formula 2.7. This KL-divergence optimization formula is displayed in Formula

2.8.

12 Chapter 2. Related Work

p̂2(vi|vj) =
wij

di
(2.7)

O2 = −
∑

(i,j)∈E

wij log p2(vj|vi) (2.8)

Negative sampling and Optimization

LINE optimizes two orders of proximity O1 and O2 separately. But optimizing p2(·|vi)

in O2 is computationally expensive, since |V | is usually a large number in the large scale

network. Thus, the negative sampling [23] is adopted. For each edge (i, j), the following

objective function is used:

p2(vj|vi) = log σ(~u′Tj · ~ui) +
K∑
i=1

Evn∼Pn(v)[log σ(−~u′Tn · ~ui)] (2.9)

Where σ is the sigmoid function defined in Formula 2.3, the first term on the right side of

the equation is the observed edges and the second term models the negative edges drawn

from the distribution.

2.2.3 Heterogeneous Model 1: PTE

PTE [33] is short for predictive text embedding. It is designed for embedding words in

a heterogeneous text network. As shown in Figure 2.3, the model first takes partially

labeled text corpora to generate a heterogeneous text network containing three levels of

sub-networks, word-word, word-document and word-label.

Figure 2.3: Convert a text corpora into a heterogeneous text network[33]

The first two contain unsupervised information while the word-label network encodes the

2.2. Introduction of Network Embedding Models 13

supervised information; hence PTE is a semi-supervised text embedding model.

For three networks, PTE performs a joint embedding training approaches using LINE.

The only difference between PTE and LINE in the training phase is that PTE only

performs negative sampling within subnetworks. For example, the negative samples for a

word-word edge are also from the word-word network. Besides, PTE only uses the second

order proximity information in the network, comparing to LINE.

2.2.4 Heterogeneous Model 2: Metapath2vec

Metapath2vec [7] represents the latest meta path based heterogeneous embedding model.

Similar to DeepWalk, the generated paths in the Metapath2vec will also be fed into Skip-

Gram for learning representations to maximize the distributed probability. But unlike

DeepWalk, the paths constructed in metapath2vec are not random but follow a predefined

schema, which is called meta path. As shown as an example in Figure 2.4, there three

meta path candidates. Take the first one (APA) for instance, the walk generator will

choose to visit a paper vertex after visiting an author vertex, and the next vertex to a

paper vertex will be an author again.

Figure 2.4: Academic network and three meta paths

Unfortunately, the model was released in late Aug. 2017. It is not included as the

benchmark, but it will be put into future work.

Chapter 3

Problem Definition

We formally define the problem of heterogeneous network embedding using edge-type

based Graph Partition and Space Projection. Firstly, we follow the idea in [34] to formu-

late homogeneous network:

Definition 3.1. Homogeneous Network A homogeneous network is defined as a graph

G=(V,E) in which V is the set of vertices, each representing an object and E is the set

of edges, each representing a relationship between two objects. Each edge e ∈ E is a pair

of two vertices u, v ∈ V , denoted as e = (u, v). If G is a weighted graph, e will be also

associated with a weight wuv > 0. If G is directed, pair (u, v) will be ordered, which means

(u, v) 6≡ (v, u) and wuv 6≡ wvu; if G is undirected, pair (u, v) will be unordered, which

means (u, v) ≡ (v, u) and wuv ≡ wvu.

A network could either be weighted or unweighted, directed or undirected. For exam-

ple, paper citation network is a typical unweighted but directed network while coauthor

network is a weighted network with undirected edges.

In practice, to regulate the format of networks, four types of networks are unified to one

type of weighted and directed networks. An unweighted network could be regarded as a

weighted network where weight value is fixed, and an undirected network could be treated

as a directed network where every edge can find its reverse one.

All vertices and edges in homogeneous network are hypothesized to be the same type.

However, real networks are usually heterogeneous, vertices represent different types and

14

15

edges indicate various relations. We first define the simplest heterogeneous network,

Bipartite Network, which contains two types of vertices and one type of edges:

Definition 3.2. Bipartite Network A bipartite network is defined as a graph G =

(V,E) where V = V1 ∪ V2 and E = EV1V2. V1 and V2 are two types of vertex sets, and in

the network there is only one type of edges ev1v2 ∈ EV1V2 connecting two vertices v1 ∈ V1

and v2 ∈ V2.

In terms of the definition for general Heterogeneous Network, we adopt the one in [7] as

follows:

Definition 3.3. Heterogeneous Network A heterogeneous network is defined as a

graph G=(V,E,T) where each vertex v ∈ V and each edge e ∈ E are associated with their

mapping functions φ(v) : V → TV and φ(e) : E → TE. TV and TE denote the sets of

object type and relation type respectively, where |TV |+ |TE| > 2.

For example, Figure 3.1 shows a typical academic network containing three types of ver-

tices, author(A), paper(P), organization(O), wherein edges could represent four relations,

coauthor(A-A), publish(A-P), citation(P-P), affiliation(A-O).

According to the above definitions, it is clear that bipartite network is one type of het-

erogeneous network where |TV | = 2 and |TE| = 1.

Since vertices and edges represent different types of objects and relations in the het-

erogeneous network, it is natural to consider methods which can divide the complex

heterogeneous network into simpler networks. This process is defined as follows:

Definition 3.4. Graph Partition For a network G = (V,E), graph partition is to

partition G into smaller components with specific properties.

Here, in our graph partition approach, we define the specific property in smaller compo-

nents is only containing one type of edges, named as Edge-type Based Graph Partition:

Definition 3.5. Edge-type Based Graph Partition For a heterogeneous network

G, partition it into minimum number of subnetworks (G1, ..., GN),where Gi j G and

G j
N⋃
i=1

Gi. In each subnetwork Gi = (V,E, T), |TE| = 1, i.e. each subnetwork is a

homogeneous or bipartite network.

16 Chapter 3. Problem Definition

Organisation

O1

O2

Author

A1

A2

A3

A4

Paper

P1

P2

P3

P4

9

5

7

2

Figure 3.1: One example of heterogeneous network: academic network Dashed arrows
denote unweighted but directed affiliation relationships, solid lines denote weighted but
undirected coauthor relationships, solid arrows denote unweighted but directed publish
relationships and dotted arrows denote unweighted but directed citation relationships.

The idea behind is to divide a network containing N types of edges into N subnetworks,

each fully containing one unique type of edges and relevant vertices in the original network.

Figure 3.2 shows subnetworks of the heterogeneous network in Figure 3.1 using edge-type

based Graph Partition. Affiliation and publish subnetworks are bipartite networks while

coauthor and citation subnetworks are homogeneous networks.

The process of taking the heterogeneous network as input and using edge-type based

Graph Partition for network embedding, is formalized as follows:

Definition 3.6. Heterogeneous Network Embedding Given a heterogeneous network

G = (V,E, T), the task of heterogeneous network embedding is to represent each vertex

v ∈ V in space R|V | into a low-dimensional space Rd, where d � |V |. These vertex

representations in Rd can preserve the structural and semantic relations in R|V |.

The output of this heterogeneous network embedding is the representation matrix X ∈

R|V |×d, where ith row is the d-dimensional numeric vector representation for vertex vi ∈

V .

17

Affiliation

O1

O2

A1

A2

A3

A4

Coauthor

A1

A2

A3

A4

Publish

A1

A2

A3

A4

P1

P2

P3

P4

Citation

P1

P2

P3

P4

9

5

7

2

Figure 3.2: Four subnetworks after using edge-type based Graph Partition in Figure 3.1

Chapter 4

The GPSP Framework

The embedding model we propose for heterogeneous network, GPSP should satisfy sev-

eral requirements: first, it is able to preserve desirable structural and semantic relations

among original vertices; second, the model should keep vertices’ type information; third,

it must be scalable for very large networks, say millions of vertices and tens of millions

of edges, fourth, it should be able to deal with directed, undirected, weighted and un-

weighted networks. The objective of GPSP is to embed heterogeneous network using

related homogeneous and bipartite networks.

4.1 Edge-type Based Graph Partition

Since heterogeneous networks contain various types of vertices and edges, it would be

suspicious to learn heterogeneous vertices representations in the same low-dimensional

latent space. We proposed one graph partition method, AKA edge-type based Graph

Partition, as previously illustrated in Figure 3.1 and 3.2. This approach will be elaborated

in this section.

4.1.1 Building Type Table

We firstly sketch all types of vertices and edges in a heterogeneous network G = (V,E, T)

as shown in Table 4.1 where there are M types of vertices and N types of edges. In

this type table, each edge type Ei is defined by source vertex type Vj and target vertex

18

4.2. For Homogeneous Network: Embedding 19

type Vk. The table is diagonally asymmetric if the network contains any unidirectional

relation, like we can say people eat fruit but we cannot say it reversely. Based on this,

two edges with the same pair of source and target vertices could be different types. For

example in the table, edge {VM−2 → V2} leads to type E2 while {V2 → VM−2} creates a

different edge type EN−2.

Source Vertex Type
V1 V2 V3 · · · VM−2 VM−1 VM

T
ar

ge
t

V
er

te
x

T
y
p

e V1 E1 · · ·
V2 · · · E2 E3

V3 · · ·
· ·
VM−2 EN−2 · · ·
VM−1 EN−1 · · ·
VM EN · · ·

Table 4.1: Edge and Vertex Type Table

4.1.2 Graph Partition

Based on the type table, perform edge-type based Graph Partition to divide network

G into N subnetworks G1, G2, · · · , Gi, · · · , GN−1, GN where Gi = (V,ETi
), ETi

is the

compete set of Ti type edges in G. Subnetworks like Gi = (V1, ET1) in Table 4.1 are

homogeneous networks while the ones such as Gj = (VM−2 ∪ V2, ET2) are categorized as

bipartite networks. For homogeneous networks, perform homogeneous network embedding

as introduced in the following section.

4.2 For Homogeneous Network: Embedding

For homogeneous network embedding, we could adopt any existing embedding model. In

this paper, we use two famous homogeneous network embedding models as introduced in

chapter two, LINE and DeepWalk.

20 Chapter 4. The GPSP Framework

4.2.1 Model One: LINE

For each homogeneous subnetwork, perform LINE model to learn representations. The

first and second orders of proximity in the network are preserved via minimizing the KL-

divergence between joint probability and empirical probability. LINE was designed only

to accept directed and weighted network, here we modified it to accept undirected or

unweighted network.

4.2.2 Model Two: DeepWalk

Similarly, perform DeepWalk on each homogeneous subnetwork. The walk generator

randomly walks around vertices in the network to generate paths for Skip-Gram to learn

representations for each vertex. The model was slightly changed to be acceptable for

weighted network since the original one cannot.

4.3 For Bipartite Network: Latent Space Projection

After learning representations from homogeneous subnetworks, how to utilize the infor-

mation hidden in the bipartite subnetworks? Unlike homogeneous network, vertices are

not the same types in the bipartite network, but previous heterogeneous network embed-

ding algorithms like PTE ignore this point. Here, instead of embedding bipartite network

directly, we decided to choose an alternative way, latent Space Projection.

4.3.1 Projective Relation

Figure 4.1 is a subset of a bipartite network. Since we have learned representations of

Oi and Pi in two different homogeneous networks in Section 4.2, or say in two different

low-dimensional spaces. We could treat the relation between objects Oi and Pi in this

bipartite network as the implicit projection between two spaces, as demonstrated in Figure

4.2.

4.3. For Bipartite Network: Latent Space Projection 21

P1

O1

P2

P3

P4
1

2

2

3

Figure 4.1: Subset of a bipartite network

O-typed homo-
geneous space

Oa

Ob

Oc

Od

P -typed homo-
geneous space

Pa

Pb

Pc

Pd

Pe

1

Figure 4.2: An illustration of Space Projection

4.3.2 Space Projection

Based upon this projective relation between two types of vertices, we could learn repre-

sentations of one type vertices in another type space via all projections between these two

spaces. Formula 4.1 formulates the representation learning process. In two homogeneous

networks O and P , each vertex Oi could learn a projective representation EOi→P , where

EOi→P =
1

N

N∑
j=1

(EPj
∗ wOiPj

) (4.1)

Where → denotes the projection relation between two vertices in two spaces,{PN} is

the complete set of objects in P that has Pj ∈ PN and Oi → Pj , EPj
is the learned

representation of object Pj in the homogeneous network, wOiPj
is the weight of the edge

22 Chapter 4. The GPSP Framework

between Oi and Pj.

Exemplify this formula using Figure 4.2, O1 connects four P -type objects P1, P2, P3 and

P4 in this bipartite network. The projective representation of O1 in P network would be

the weighted mean of the embedding vectors for P1, P2, P3 and P4, the equation is shown

as follows:

EO1 =
1

4
∗ (EP1 + 2 ∗ EP2 + 2 ∗ EP3 + 3 ∗ EP4)

4.3.3 Discussion

This projective relation should be reversible. The embedding of P -type vertices could also

be learned in O-type network via the same projective relation. Moreover, it is possible

to have two projective relations between two spaces. For example, a group of people

write textbooks for a larger group of people. There are two projective relations between

”people” and ”books” types. The first group of people write books, and textbooks educate

the second group of people, as illustrated in Figure 4.3. The ”write” and ”educate”

relations could be both used to learn projective representations for people and textbooks

networks.

People network
space

Pa

Pb

Pc

Pd

Textbooks network
space

Ta

Tb

Tc

Td

Te

Write

Educate

Figure 4.3: Two reverse projective relations

4.4. Representations Concatenation 23

4.4 Representations Concatenation

In section 4.2, we learned the representation of a vertex in its homogeneous network

and in section 4.3, we learned the projective representation of a vertex in the bipartite

network. As shown in Figure 4.5, our final heterogeneous embedding for each vertex

concatenates potentially one homogeneous embedding and potentially several projective

embeddings. For example, in Table 4.1, the heterogeneous embedding for V1-typed vertices

contains one homogeneous embedding and another projective embedding in {V1 → VM}

bipartite network, while V2-typed vertices’ heterogeneous embedding only consists of three

projective embeddings from {V2 → VM−2}, {VM−2 → V2} and {VM−1 → V2} bipartite

networks.

· · ·
Homogeneous Embedding Projective Embedding 1 Projective Embedding N

Figure 4.4: Concatenate representations

4.5 Discussion

If each embedding is regarded as multi-dimensional coordinates in the relevant latent

space, homogeneous embedding indicate the vertex’s position in its own type space, and

the projective embedding implicitly represent the vertex’s hidden position in another

type space. So the final heterogeneous embedding is just an ensemble of coordinates for

a single vertex in different spaces. Since different spaces contain different information,

the ensemble embeddings should represent the vertex better than the single embedding.

Comparing to the previous embedding approaches, this approach both preserve vertices’

type property, and structural information via homogeneous embedding. The following is

the algorithm of the GPSP framework.

24 Chapter 4. The GPSP Framework

Algorithm 1: The GPSP algorithm

Data: The heterogeneous information network G = (V,E, T), number of negative

samples n, number of walks per node w, walk length l, embedding

dimension d, neighborhood size k.

Result: The latent vertex embeddings X ∈ R|V |×d

subnetworkList = EdgeTypedBasedGraphPartition(G);

homogeneousEmbeddingList;

projectiveEmbeddingList;

for i = 1 to len(subnetworkList) do

if subnetworkList[i] is homogeneous network then

add LINE(subnetworkList[i], n, d) or

DeepWalk(subnetworkList[i], w, l, d, k) into homogeneousEmbeddingList;

else

add SpaceProjection(homogeneousEmbeddingList,subnetworkList[i]) into

projectiveEmbeddingList

end

end

X;

for i = 1 to len(homogeneousEmbeddingList) do

a = vertex type in homogeneousEmbeddingList[i] idx = index row of type a in

X X = concatenation of X and homogeneousEmbeddingList[i] in row idx

end

for i = 1 to len(projectiveEmbeddingList) do

a = vertex type in projectiveEmbeddingList[i] idx = index row of type a in X

X = concatenation of X and projectiveEmbeddingList[i] in row idx

end

4.5. Discussion 25

Algorithm 2: The EdgeTypedBasedGraphPartition algorithm

Data: The heterogeneous information network G = (V,E, T)

Result: subnetworkList

edgeTypeList;

for i = 1 → len(E) do

if Ei not the type in edgeTypeList then

add Ei’s type into edgeTypeList;

end

end

subnetworkList;

for i = 1 → len(E) do

j = the index of the element in subnetworkList to contain Ei type;

add Ei to subnetworkList[j];

end

Algorithm 3: The SpaceProjection algorithm

Data: homogeneousEmbeddingList, bipartite network bn

Result: projectiveEmbedding

projectiveEmbedding;

[a,b] = two vertex types in bn;

if type a in homogeneousEmbeddingList then

for each vertex in type b do

add result of Eq. 4.1 into projectiveEmbedding

end

end

if type b in homogeneousEmbeddingList then

for each vertex in type a do

add result of Eq. 4.1 into projectiveEmbedding

end

end

Chapter 5

Experiments

In this section, we evaluate the efficiency and efficacy of the GPSP for heterogeneous

network embedding via multiple machine learning problems. We built two GPSP models,

GPSPL which uses LINE as the homogeneous embedding model and GPSPD that adopts

DeepWalk to embed homogeneous subnetworks.

5.1 Experimental setup

5.1.1 Data Set

We constructed an academic heterogeneous network, based on the dataset from AMiner

Computer Science1 [35]. The AMiner dataset contains 9, 323, 739 computer scientists

and 3, 194, 405 papers from 3, 883 computer science venues. The constructed network

consists of two types of vertices: authors and papers, and three types of edges: authors

coauthor with each other, authors write papers, papers cite other papers. After edge-based

Graph Partition, two homogeneous subnetwork coauthor (A-A) network and citation (P-

P) network, and one bipartite network, writing (A-P) network will be generated.

1https://aminer.org/aminernetwork

26

5.1. Experimental setup 27

5.1.2 Benchmark Algorithms

We compared GPSP with several recent successful homogeneous or heterogeneous network

embedding algorithms as benchmarks:

1. Deepwalk[27]: We directly fed the heterogeneous network as input into the Deep-

Walk model.

2. LINE[34]: We used three LINE models in the experiment, LINE with first order

proximity (LINE-1st), LINE with second order proximity (LINE-2nd) and LINE

with both first and second orders of proximity (LINE-1st+2nd).

3. PTE[33]: PTE is initially designed for semi-supervised embedding for heterogeneous

text network by preserving the second order proximity in LINE. Here we modified

the model to embed our heterogeneous network in an unsupervised fashion.

5.1.3 Parameter Settings

For GPSP and all benchmark models listed above, we try to use the same parameters.

1. The homogeneous and projective embeddings dimension is 128. (The dimension in

LINE-1st+2nd is 128 + 128)

2. The size of negative samples is 5.

3. The number of random walks to start at each node in deepwalk is 10.

4. The walk length in deepwalk is 40.

We evaluated the performance of the embeddings learned via different algorithms over

two network mining tasks, multi-label classification and node clustering. Besides, we also

visualized the vertices representations into a 2-D space via T-SNE [20].

28 Chapter 5. Experiments

5.1.4 Configuration

All the models are run on a single Linux machine with 32G memory, Xeon E5-1650 v3

CPU at 3.5GHZ using 12 threads. The codes of LINE2 and DeepWalk3 are collected from

Github and PTE is implemented upon the code of LINE in C++. The model GPSP and

network mining tasks are mainly implemented in Python code with libraries like Pandas,

Numpy and Sklearn.

5.2 Multi-label classification

5.2.1 Procedure

For the multi-label classification, we use the labeled dataset generated by [7] which groups

authors into 8 categories based on authors’ research fields4. We try to match this label set

with our author embeddings, and we get 103,024 successfully matching author embeddings

with their labels.

A linear SVM is used to classify these author embeddings while the ratio of the training set

is set from 10% to 90% and the rest is all for testing. We evaluate the average performance

of each embedding algorithm for 10 random runs in Micro-F1 and Macro-F1 scores. The

variances of the performance between different runs are usually within 2%. The formula

of F1 score is shown below. Precision and recall in Micro-F1 are calculated based on

values of true positive, false positive or false negative in each class while precision and

recall in Macro-F1 are just the average values of precision and recall in all classes.

F1 = 2 · precision · recall
precision+ recall

(5.1)

Moreover, to separately explore the information hidden in homogeneous and projective

embeddings, homogeneous author embedding in the author network is denoted as ”GPSP-

2https://github.com/tangjianpku/LINE
3https://github.com/phanein/deepwalk
48 groups are Computing Systems, Theoretical Computer Science, Computer Networks & Wireless

Communication, Computer Graphics, Human Computer Interaction, Computational Linguistics, Com-
puter Vision & Pattern Recognition, Databases & Information Systems.

5.2. Multi-label classification 29

author”, and projective author embedding using the paper network and the ”writing-

relation” bipartite network is denoted as ”GPSP-paper”.

5.2.2 Result and evaluation

Table 5.1 and 5.2 report the results of multi-label classification using different models

measured by two metrics, Micro-F1 and Macro-F1. Overall, the two proposed models

GPSPL and GPSPD outperform all benchmarks for both metrics. When varying the

training ratio, the performances of models are quite stable. The constant gains achieved

by both proposed models are around 3%-5% over the related baselines.

When investigating the contributions of homogeneous part and projective part in the

complete GPSP embedding by evaluating these two parts respectively, it turns out the

projective part, i.e. the embedding in method GPSP-paper, performs better than the

embedding the GPSP-author for both LINE and DeepWalk related models, indicating

that projective embedding offers a larger contribution to the embedding in the complete

model GPSP.

It is also noticeable that LINE-related models outperform DeepWalk-related models. As

proposed in [34], they take DeepWalk as a network embedding algorithm which only con-

siders the structural information (second order proximity) by randomly walking. However,

DeepWalk still performs better than LINE-2nd model which might be because higher or-

ders of proximity are recorded in the random walking than the just second order proximity

in LINE-2nd.

In summary, GPSP generates more appropriate embeddings for heterogeneous networks

than the current state-of-the-art baselines, by evaluating the performance in the multi-

label classification problem. This indicates the proposed model can preserve better ver-

tices’ information for embedding heterogeneous networks.

30 Chapter 5. Experiments

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

LINE-1st 0.7003 0.7069 0.7081 0.7087 0.7087 0.7084 0.7079 0.7087 0.7079
LINE-2nd 0.6436 0.6446 0.6457 0.6462 0.6463 0.6458 0.6456 0.6450 0.6470

LINE-1st+2nd 0.7062 0.7064 0.7067 0.7075 0.7074 0.7077 0.7062 0.7072 0.7075
PTE 0.7122 0.7125 0.7129 0.7135 0.7133 0.7138 0.7140 0.7135 0.7138

GPSPL-author 1st 0.6390 0.6420 0.6430 0.6436 0.6439 0.6432 0.6426 0.6448 0.6455
GPSPL-author 2nd 0.6162 0.6179 0.6184 0.6186 0.6181 0.6181 0.6183 0.6199 0.6212

GPSPL-author 1st+2nd 0.6487 0.6509 0.6515 0.6519 0.6522 0.6515 0.6519 0.6534 0.6540
GPSPL-paper 1st 0.7118 0.7148 0.7136 0.7156 0.7167 0.7127 0.7219 0.7206 0.7227
GPSPL-paper 2nd 0.6532 0.6546 0.6553 0.6554 0.6546 0.6540 0.6552 0.6521 0.6565

GPSPL-paper 1st+2nd 0.7235 0.7247 0.7247 0.7252 0.7256 0.7250 0.7262 0.7256 0.7267
GPSPL 1st 0.7344 0.7378 0.7397 0.7396 0.7391 0.7401 0.7410 0.7425 0.7388
GPSPL 2nd 0.7121 0.7128 0.7141 0.7130 0.7148 0.7146 0.7137 0.7145 0.7159

GPSPL 1st+2nd 0.7512 0.7540 0.7557 0.7564 0.7564 0.7558 0.7554 0.7574 0.7552

Macro-F1

LINE 1st 0.6996 0.7050 0.7061 0.7069 0.7067 0.7062 0.7056 0.7063 0.7059
LINE 2nd 0.6389 0.6400 0.6413 0.6417 0.6419 0.6415 0.6409 0.6403 0.6426

LINE 1st+2nd 0.7032 0.7034 0.7036 0.7046 0.7043 0.7049 0.7035 0.7044 0.7036
PTE 0.7089 0.7093 0.7094 0.7098 0.7101 0.7104 0.7090 0.7099 0.7094

GPSPL-author 1st 0.6399 0.6427 0.6434 0.6439 0.6438 0.6436 0.6424 0.6451 0.6451
GPSPL-author 2nd 0.6119 0.6136 0.6141 0.6143 0.6140 0.6138 0.6138 0.6162 0.6169

GPSPL-author 1st+2nd 0.6477 0.6498 0.6506 0.6507 0.6508 0.6501 0.6506 0.6529 0.6528
GPSPL-paper 1st 0.7087 0.7112 0.7099 0.7120 0.7130 0.7083 0.7198 0.7177 0.7211
GPSPL-paper 2nd 0.6557 0.6574 0.6580 0.6582 0.6571 0.6570 0.6578 0.6550 0.6591

GPSPL-paper 1st+2nd 0.7212 0.7226 0.7226 0.7230 0.7231 0.7229 0.7243 0.7232 0.7251
GPSPL 1st 0.7318 0.7356 0.7369 0.7369 0.7361 0.7374 0.7388 0.7402 0.7364
GPSPL 2nd 0.7111 0.7117 0.7132 0.7119 0.7139 0.7137 0.7130 0.7136 0.7155

GPSPL 1st+2nd 0.7482 0.7513 0.7527 0.7534 0.7534 0.7529 0.7526 0.7544 0.7522

Table 5.1: Multi-label classification results for author embeddings in LINE-related algo-
rithms

Metric Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

Deepwalk 0.6992 0.6998 0.7010 0.7008 0.6992 0.6988 0.6986 0.6964 0.6988
GPSPD-author 0.5919 0.5936 0.5950 0.5968 0.5963 0.5993 0.5974 0.5995 0.5980
GPSPD-paper 0.7010 0.7011 0.7016 0.7019 0.7021 0.7020 0.7018 0.7023 0.7020

GPSPD 0.7275 0.7304 0.7318 0.7330 0.7324 0.7328 0.7320 0.7331 0.7318

Macro-F1

Deepwalk 0.6964 0.6969 0.6982 0.6981 0.6965 0.6964 0.6963 0.6937 0.6961
GPSPD-author 0.5872 0.5887 0.5912 0.5922 0.5912 0.5977 0.5941 0.5971 0.5944
GPSPD-paper 0.7012 0.7015 0.7018 0.7020 0.7022 0.7021 0.7018 0.7023 0.7016

GPSPD 0.7253 0.7280 0.7290 0.7300 0.7298 0.7302 0.7295 0.7306 0.7289

Table 5.2: Multi-label classification results for author embeddings in DeepWalk-related
algorithms

5.3 Clustering

5.3.1 Procedure

We also illustrate how the latent representations learned by different embedding models

using another network mining task, node clustering. Similar to multi-label classification,

we ran the each model 10 times and recorded the average score. The clustering algo-

rithm is K-means clustering where k is assigned to 8, and the evaluator for clusters is

normalized mutual information (NMI) [31], which measures the mutual information con-

tained between the generated cluster and the label cluster introduced in the multi-label

5.4. Parameter Sensitivity 31

classification task.

5.3.2 Result and evaluation

Table 5.3 and 5.4 list the result of both LINE-related and DeepWalk-related models using

NMI. Overall, two GPSP models GPSPL and GPSPD outperform their baselines around

5%-7%, and GPSPD performs better than GPSPL to 4%.

Unlike the performance between 1-st and 2-nd order proximity models in the multi-label

classification, the 2-nd order proximity model performs much better in node clustering

task, even better than the complete LINE-based model in several cases. We could make

a hypothesis based on this finding, that structural information (2nd order proximity)

matters more for node clustering task. This assumption is supported by the performance

in the DeepWalk-based models. Since DeepWalk preserves even higher order proximity

in the network, it , in general, performs better than LINE-based models.

The poor performance for GPSPL-paper 1st model might suggest that in citation network,

the first order proximity might not be able to preserve the cluster information. On the

contrary, the poor performance for GPSPD-author model could mean that high order

proximity for coauthor network is not suitable for finding representation for clustering.

Method LINE PTE GPSPL-author GPSPL-paper GPSPL
1-st order 0.3015 NA 0.2609 0.0447 0.1049
2-nd order 0.2529 0.2634 0.2505 0.2403 0.3118

1st2nd order 0.2516 NA 0.2607 0.1738 0.1894

Table 5.3: Node results for author embeddings in LINE-related algorithms

Method Deepwalk GPSPD-author GPSPD-paper GPSPD
performance 0.2873 0.1681 0.3392 0.3555

Table 5.4: Node results for author embeddings in DeepWalk-related algorithms

5.4 Parameter Sensitivity

In the GPSPL and GPSPD models, they share one parameter, the number of dimensions

of the homogeneous embedding. We conduct a sensitivity analysis of the method GPSPL

32 Chapter 5. Experiments

1st+2nd on this parameter for multi-label classification. Table 5.5 shows the result of

Mirco-F1 and Macro-F1 scores using embeddings with different sizes of dimension, where

the default dimension for both GPSPL-author and GPSPL-paper model is 256. The

training ratio is set to 50%.

From the table, we can learn the computational cost (dimensions of the embedding) and

the efficacy (Micro-F1 or Marco-F1 score) can be balanced at the dimension size as 256

for each part of embedding. When the dimension is larger than 256, the performance

stops to improve and becomes stable. But from 128 to 256, we could still clearly see

an improvement as shown in the table. Furthermore, only expanding the size of one

part embedding will not help the model to reach the optimal performance. For exam-

ple, the performance of model (Paper-128+Author-1024) is still worse than the model

(Paper-256+Author-256), indicating the information contained in each part of embed-

ding is limited comparing to the embedding for the full network.

Paper
128 256 512 768 1024

A
u
th

o
r

128 0.7356 0.7542 0.7523 0.7520 0.7525
256 0.7387 0.7556 0.7567 0.7562 0.7568
512 0.7364 0.7545 0.7563 0.7559 0.7569
768 0.7368 0.7554 0.7564 0.7568 0.7572
1024 0.7370 0.7557 0.7562 0.7572 0.7578

(a) Parameter sensitivity: Micro-F1

Paper
128 256 512 768 1024

A
u
th

o
r

128 0.7289 0.7467 0.7484 0.7513 0.7504
256 0.7312 0.7479 0.7501 0.7503 0.7509
512 0.7314 0.7475 0.7498 0.7508 0.7502
768 0.7309 0.7480 0.7501 0.7508 0.7513
1024 0.7316 0.7476 0.7498 0.7503 0.7501

(b) Parameter sensitivity: Macro-F1

Table 5.5: Parameter sensitivity in multi-label classification

5.5 Scalability

As said before, the network which the embedding models need to tackle usually consists

of millions of vertices and tens of millions of edges. So it is necessary to demonstrate the

scalability of the embedding model GPSP. The scale mechanism for LINE and DeepWalk

can be adopted to GPSP as well. All experiments are run on a single machine with the

same configuration introduced above, but with different threads, 1,2,4,6,12, each of them

5.6. Visualization 33

0 2 4 6 8 10 12
0

2

4

6

8

10

12

The number of threads

S
p

ee
d
u
p

ra
ti

o

Optimal
GPSPL
GPSPD

Figure 5.1: Scalability of GPSP

utilizing one CPU logical core.

Figure 5.1 shows the speedup ratio of GPSPL and GPSPD with respect to the number of

threads in the model. Theoretically, the optimal scalable model should perform as denoted

as the blue line. But generally, two models still show their ability to achieve sub-linear

speedup ratio, which is acceptable. Specifically, GPSPD is slightly better than GPSPL

because generating random paths in GPSPD can be easily parallelized. By using 12

cores, GPSPL takes 73 minutes to run GPSPL-author 1st and 76 minutes to run GPSPL-

author 2nd while it costs 86 minutes to run GPSPD-author model. 156, 0640 vertices

and 851, 7892 directed edges consist of the author homogeneous network. Overall, the

proposed model GPSP has shown its ability to embed large-scale heterogeneous networks.

5.6 Visualization

TensorFlow provides an Embedding Projector5 to visualize the high-dimensional embed-

dings into low-dimensional space using PCA or T-SNE. We try to feed the 4 DeepWalk-

related embeddings into the projector using T-SNE to train the 2 dimensional projections

of all authors.

5http://projector.tensorflow.org/

34 Chapter 5. Experiments

T-SNE [20] is short for t-distributed Stochastic Neighbor Embedding. It projects high

dimension data into 2 or 3-dimensional space for visualization. It measures similarities

between data points using joint probabilities and adopts Kullback-Leibler (KL) diver-

gence to minimize the probabilities between the low-dimensional projection and the high-

dimensional data.

The Projector will randomly sample the large input down to 10, 000 data points. Figure

5.2 is the 2D projections of embeddings of GPSPD. The numeric labels in the projection

match eight subfields in Computer Science, as shown in Table 5.6. (If the label is blurry

in the printed version, please refer to the original images stored in Google Drive 6.)

From this figure, we can clearly see the GPSPD model roughly groups authors in the same

subfields together. Besides, we can find more hidden information from this projection.

For example, cluster 4 (light green) and 7 (light blue) are located quite closely in the

projection, while their representing subfields Computer Graphics and Computer Vision

& Pattern Recognition are both related to handling images-related problems.

Computing Systems Theoretical Computer Science Computer Networks & Wireless Communication
1 2 3

Computer Graphics Human Computer Interaction Computational Linguistics
4 5 6

Computer Vision & Pattern Recognition Databases & Information Systems
7 8

Table 5.6: Eight subfields in CS and their numerical representations in the projection

Figure 5.3 summarizes four projections generated by four DeepWalk-based models, Deep-

Walk, GPSPD-author, GPSPD-paper and GPSPD. As shown in node clusteing part,

(Table 5.4), it is clear that the projection of the embedding in GPSPD-author is much

worse than the rest three in grouping authors. Comparing to the one in DeepWalk, our

proposed GPSPD model can generate better embedding that is able to group author

geographically more clearly in the T-SNE projection format.

Thus, these visualizations can intuitively demonstrate GPSP’s ability to discover the

latent information among multiple types of vertices in the heterogeneous network.

6https://drive.google.com/open?id=0B3XilEbNpq1ycG0tR3pBMHhwX3c

5.6. Visualization 35

Figure 5.2: 2D T-SNE projections of embeddings in GPSPD

36 Chapter 5. Experiments

(a) 2D T-SNE projections of embeddings in
DeepWalk

(b) 2D T-SNE projections of embeddings in
GPSPD-author

(c) 2D T-SNE projections of embeddings in
GPSPD-paper

(d) 2D T-SNE projections of embeddings in
GPSPD

Figure 5.3: 2D T-SNE projections of four DeepWalk-related embeddings

Chapter 6

Conclusion and Future work

6.1 Conclusion

In this work, we formally define the edge-based Graph Partition approach to divide a

complex network into atomic subnetworks, where an atomic subnetwork is defined as a

subnetwork only containing one type of edges. We also introduce the Space Projection

concept which can learn a vertex’s different representations from multiple homogeneous

networks. To implement the above concepts, we propose the GPSP, a heterogeneous

network embedding model. In GPSP, edge-based Graph Partition is applied to the het-

erogeneous network to generate two types of atomic subnetworks, homogeneous ones and

bipartite ones. Then, we use LINE and DeepWalk to embed each homogeneous networks

to generate homogeneous embeddings. Next, for each bipartite network, we use the pro-

jective relation in the network to generate projective embeddings for the related types of

vertices. Finally, GPSP concatenates learned homogeneous embeddings and projective

embeddings as the output of the model. Extensive experiments have shown the advan-

tages of GPSP comparing to all benchmarks in various heterogeneous network mining

tasks, such as node classification and clustering, or visualization.

37

38 Chapter 6. Conclusion and Future work

6.2 Reflection on Project Plan

As shown in the Appendix, the plan is vastly different from the actual execution. The

planned idea was to use the heterogeneity classifier in HSCA [14] to separate the hetero-

geneous network into homogeneous networks. But the further research shows that this

approach neither considers the relation between different types of objects nor is scalable

for large networks. Also, because the network embedding is a quite new and fast-changing

field, there were no models for embedding general heterogeneous networks when the plan

was written.

6.3 Future Work

There are a couple of optimizations and improvements in the future.

Since the data and code for the latest meta path based heterogeneous network embedding

model metapath2vec was only available one week before the deadline, there was not

enough time to perform experiment on it. In the future, metapath2vec should be included

as one benchmark.

From the classification and clustering result, it seems like coauthor network contains

more information in the first order proximity form while high order proximity is better

for citation network. How about making an ensemble model to mix the proposed LINE-

based and DeepWalk-based model?

What will happen if we iterate the embedding process in the model multiple times?

Specifically, how about feeding the learned embedding back to the model to learn the

reverse projective embedding via bipartite subnetworks and retrain the embedding via

homogeneous subnetworks? These questions may lead to interesting answers.

Bibliography

[1] Aiello, L. M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B.,

and Menczer, F. Friendship prediction and homophily in social media. ACM

Transactions on the Web (TWEB) 6, 2 (2012), 9.

[2] Belkin, M., and Niyogi, P. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In NIPS (2001), vol. 14, pp. 585–591.

[3] Bengio, Y., Courville, A., and Vincent, P. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence 35, 8 (2013), 1798–1828.

[4] Borg, I., and Groenen, P. J. Modern multidimensional scaling: Theory and

applications. Springer Science & Business Media, 2005.

[5] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detection: A survey.

ACM computing surveys (CSUR) 41, 3 (2009), 15.

[6] Chung, F. R. Spectral graph theory. No. 92. American Mathematical Soc., 1997.

[7] Dong, Y., Chawla, N. V., and Swami, A. metapath2vec: Scalable representa-

tion learning for heterogeneous networks. In Proceedings of KDD (2017).

[8] Filotti, I., Miller, G. L., and Reif, J. On determining the genus of a graph

in o (v o (g)) steps (preliminary report). In Proceedings of the eleventh annual ACM

symposium on Theory of computing (1979), ACM, pp. 27–37.

[9] Getoor, L., and Diehl, C. P. Link mining: a survey. Acm Sigkdd Explorations

Newsletter 7, 2 (2005), 3–12.

39

40 BIBLIOGRAPHY

[10] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks.

In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining (2016), ACM, pp. 855–864.

[11] Han, J. Mining heterogeneous information networks by exploring the power of links.

In Discovery Science (2009), Springer, pp. 13–30.

[12] Huang, Z., and Mamoulis, N. Heterogeneous information network embedding

for meta path based proximity. arXiv preprint arXiv:1701.05291 (2017).

[13] Iwata, T., Yamada, T., and Ueda, N. Probabilistic latent semantic visual-

ization: topic model for visualizing documents. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining (2008),

ACM, pp. 363–371.

[14] Jacob, Y., Denoyer, L., and Gallinari, P. Learning latent representations of

nodes for classifying in heterogeneous social networks. In Proceedings of the 7th ACM

international conference on Web search and data mining (2014), ACM, pp. 373–382.

[15] Jensen, D., and Goldberg, H. Aaai fall symposium on ai and link analysis,

1998.

[16] Ji, M., Han, J., and Danilevsky, M. Ranking-based classification of heteroge-

neous information networks. In Proceedings of the 17th ACM SIGKDD international

conference on Knowledge discovery and data mining (2011), ACM, pp. 1298–1306.

[17] Leroy, V., Cambazoglu, B. B., and Bonchi, F. Cold start link prediction.

In Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining (2010), ACM, pp. 393–402.

[18] Lewis, T. G. Network science: Theory and applications. John Wiley & Sons, 2011.

[19] Liben-Nowell, D., and Kleinberg, J. The link-prediction problem for social

networks. journal of the Association for Information Science and Technology 58, 7

(2007), 1019–1031.

BIBLIOGRAPHY 41

[20] Maaten, L. v. d., and Hinton, G. Visualizing data using t-sne. Journal of

Machine Learning Research 9, Nov (2008), 2579–2605.

[21] Mei, Q., Cai, D., Zhang, D., and Zhai, C. Topic modeling with network

regularization. In Proceedings of the 17th international conference on World Wide

Web (2008), ACM, pp. 101–110.

[22] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[23] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems (2013), pp. 3111–3119.

[24] Morin, F., and Bengio, Y. Hierarchical probabilistic neural network language

model. In Aistats (2005), vol. 5, Citeseer, pp. 246–252.

[25] Ng, A. Y., Jordan, M. I., and Weiss, Y. On spectral clustering: Analysis

and an algorithm. In Advances in neural information processing systems (2002),

pp. 849–856.

[26] Otte, E., and Rousseau, R. Social network analysis: a powerful strategy, also

for the information sciences. Journal of information Science 28, 6 (2002), 441–453.

[27] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of social

representations. In Proceedings of KDD (2014), pp. 701–710.

[28] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-

Rad, T. Collective classification in network data. AI magazine 29, 3 (2008), 93.

[29] Shi, C., Li, Y., Zhang, J., Sun, Y., and Philip, S. Y. A survey of hetero-

geneous information network analysis. IEEE Transactions on Knowledge and Data

Engineering 29, 1 (2017), 17–37.

[30] Sun, Y., and Han, J. Mining heterogeneous information networks: a structural

analysis approach. ACM SIGKDD Explorations Newsletter 14, 2 (2013), 20–28.

42 BIBLIOGRAPHY

[31] Sun, Y., Han, J., Yan, X., Yu, P. S., and Wu, T. Pathsim: Meta path-based

top-k similarity search in heterogeneous information networks. Proceedings of the

VLDB Endowment 4, 11 (2011), 992–1003.

[32] Sun, Y., Norick, B., Han, J., Yan, X., Yu, P. S., and Yu, X. Pathsel-

clus: Integrating meta-path selection with user-guided object clustering in heteroge-

neous information networks. ACM Transactions on Knowledge Discovery from Data

(TKDD) 7, 3 (2013), 11.

[33] Tang, J., Qu, M., and Mei, Q. Pte: Predictive text embedding through large-

scale heterogeneous text networks. In Proceedings of KDD (2015), pp. 1165–1174.

[34] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. Line: Large-

scale information network embedding. In Proceedings of WWW (2015), pp. 1067–

1077.

[35] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z. Arnetminer:

extraction and mining of academic social networks. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining (2008),

ACM, pp. 990–998.

[36] Tang, L., Liu, H., Zhang, J., and Nazeri, Z. Community evolution in dy-

namic multi-mode networks. In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining (2008), ACM, pp. 677–685.

[37] Tenenbaum, J. B., De Silva, V., and Langford, J. C. A global geometric

framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319–

2323.

[38] Tu, C., Liu, Z., and Sun, M. Inferring correspondences from multiple sources

for microblog user tags. In Chinese National Conference on Social Media Processing

(2014), Springer, pp. 1–12.

[39] Von Luxburg, U. A tutorial on spectral clustering. Statistics and computing 17,

4 (2007), 395–416.

BIBLIOGRAPHY 43

[40] Washio, T., and Motoda, H. State of the art of graph-based data mining. Acm

Sigkdd Explorations Newsletter 5, 1 (2003), 59–68.

[41] Wasserman, S., and Faust, K. Social network analysis: Methods and applica-

tions, vol. 8. Cambridge university press, 1994.

[42] Wassermann, S., and Faust, K. Social network analysis: Methods and applica-

tions, 1994.

[43] Yang, C., Liu, Z., Zhao, D., Sun, M., and Chang, E. Y. Network represen-

tation learning with rich text information. In IJCAI (2015), pp. 2111–2117.

Appendix A

Project Plan

Figure A.1: Gantt Chart

44

